C. U. SHAH UNIVERSITY, WADHWAN CITY.

Faculty of: Computer Science
 Course: Bachelor of Science Information Technology
 Semester: I
 Subject Code: MDC201-1C
 Subject Name: FOUNDATION IN COMPUTATIONAL MATHEMATICS

$\mathbf{S r}$	$\begin{gathered} \text { Catego } \\ \text { ry } \end{gathered}$	Subject Code	Subject Name	Teaching hours/ Week			$\begin{gathered} \text { Cre } \\ \text { dit } \\ \text { hou } \\ \text { rs } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Credi } \\ \text { t } \\ \text { Point } \\ \text { s } \end{array}$	Evaluation Scheme/ Semester								
									Theory				Tutorial / Practical				$\begin{gathered} \text { Tota } \\ 1 \end{gathered}$
				Th		u Pr				inuous and prehensive valuation	$\text { End } \mathbf{E x}$	Semester xams		ernal ssment	$\underset{\text { Ex }}{\text { End }}$	emester xams	
									Marks	Activity	$\begin{gathered} \text { Mark } \\ \mathbf{s} \end{gathered}$	$\begin{gathered} \text { Duratio } \\ n \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Mark } \\ \text { s } \end{array}$	$\begin{array}{\|c\|} \hline \text { Duratio } \\ \mathrm{n} \end{array}$	$\begin{gathered} \text { Mark } \\ \mathbf{s} \end{gathered}$	$\begin{gathered} \text { Duratio } \\ \mathbf{n} \end{gathered}$	
4	MDC	$\left\|\begin{array}{c} \mathrm{MDC} 201 \\ -1 \mathrm{C} \end{array}\right\|$	FOUNDATION IN COMPUTATION AL MATHEMATICS	4	-	--	4	4	20 20 10	Assignment MCQ Attendance	50	2	--	--	-	-	100

AIM:

This course is aimed at enabling the students to solve arithmetic and logical problems

COURSE CONTENTS

Unit I Set

(10 Lectures)

- Definition
- Methods of representing sets, Different notations in sets, Standard sets of numbers
- Types of sets, Empty set, Singleton set, Finite set, Infinite set, Equivalent Sets
- Equal sets, Subset, Superset, Proper subset, Power set, Universal set, Venn diagrams
- Operations on sets, Union of sets, Cardinal number of sets, Cardinal properties of sets
- De Morgan's law for intersection, Cartesian product of two sets

Unit II Relation

(06 Lectures)

- Definition, Properties of relation, Domain and range
- Representation of relations using graph, Types of relation
- Reflexive Relation, Symmetric Relation, Anti-Symmetric Relation
- Transitive Relation, Equivalence Relation, Combining relations
- Composition of Relations

Unit III Function

(06 Lectures)

- Definition, Domain, Co-domain and range of a function
- Types of functions, Even Function, Odd Function
- Monotonic Function, Subjective Function, Bijective Function
- Injective Function, Equal functions, Real functions
- Different functions and their graphs
- Definition of determinant, properties of determinant, Definition of matrix
- Types of matrices, row matrix, column matrix, null matrix
- square matrix, diagonal matrix, scalar matrix, identity matrix,
- Symmetric matrix, Orthogonal matrix, Transpose of matrix
- Addition of matrix, Subtraction of matrix
- Scalar multiplication of matrix, Matrix multiplication
- Determinant of a square matrix, Adjoint of a matrix, Inverse of matrix

Unit V Co-ordinate Geometry
(05 Lectures)

- Introduction
- Distance between two points, Section formula, Area of triangle
- Collinearity of three points, Equation of straight lines, Slope of a straight line
- Intercepts of a line on the axes, Standard forms of equations of straight lines
- Angle between two points

Unit VI Limit and continuity
(10 Lectures)

- Introduction to limit
- Meaning of $x->a$
- Meaning of $x->0$
- Meaning of $x->\infty$
- Limit of a function, Limit of a function by preparing tables, Rules of limit
- Some standard limits, Notations for finite series, Introduction to continuity
- Definition of continuity, Examples.

Arrangement of lectures duration and practical session as per defined credit numbers:

Units	Lecture Duration (In Hrs.)		Calculation of Credits (In Numbers)		Total Lecture Duration	Credit Calculation
	Theory	Practical	Theory	Practical	Theory+ Practical	Theory+ Practical
Unit - 1	10	00	4	0	10	4
Unit-2	06	00			06	
Unit - 3	06	00			06	
Unit - 4	08	00			08	
Unit - 5	05	00			05	
Unit - 6	10	00			10	
TOTAL	45	00	4	0	45	4

Evaluation:

Theory Marks	Practical Marks	Total Marks
$\mathbf{1 0 0}$	$\mathbf{0 0}$	$\mathbf{1 0 0}$

REFERENCE BOOKS:

1. "BCA Advanced Mathematics", H.R. Vyas, B.S. Shah Publication (3rd Edition-2007)
2. "Fundamental of Mathematical Analysis", G Das \& S Pattanayak, Tata McGraw-Hill publishing company Ltd.
3. "Mathematical \& statistical foundation of computer science", C Jamnadas\& Co (New Edition-2013).
4. "Polytechnic Mathematics", S. P Deshpande, Pune VidyarthiGruhPrakashan, 1984
5. "Advanced Mathematics",RaviGor, Nirav Publication(4th Edition-2006)
